Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence.
نویسندگان
چکیده
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.
منابع مشابه
The contribution of serum opacity factor to group A streptococcal epithelial cell invasion
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40–50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. SOF is co-transcribed in a twogene operon with another fibronectin-binding protein, SfbX. We compared the ability of an SOF(+) wild-type (WT) se...
متن کاملGroup B Streptococcal b-Hemolysin/Cytolysin Promotes Invasion of Human Lung Epithelial Cells and the Release of Interleukin-8
Pneumonia and lung injury are hallmarks of early-onset neonatal group B streptococcal (GBS) infections. Production of a b-hemolysin/cytolysin (b-h/c) encoded by the cylE gene is associated with GBS virulence in vivo. To elucidate the contribution of the b-h/c toxin to lung injury, the interactions of GBS wild-type strains and isogenic cylE mutants with A549 lung epithelial cells were examined. ...
متن کاملGroup B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8.
Pneumonia and lung injury are hallmarks of early-onset neonatal group B streptococcal (GBS) infections. Production of a beta-hemolysin/cytolysin (beta-h/c) encoded by the cylE gene is associated with GBS virulence in vivo. To elucidate the contribution of the beta-h/c toxin to lung injury, the interactions of GBS wild-type strains and isogenic cylE mutants with A549 lung epithelial cells were e...
متن کاملThe Structure and Function of Serum Opacity Factor: A Unique Streptococcal Virulence Determinant That Targets High-Density Lipoproteins
Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a multifunct...
متن کاملOpacity factor activity and epithelial cell binding by the serum opacity factor protein of Streptococcus pyogenes are functionally discrete.
Serum opacity factor (SOF) is a unique multifunctional virulence determinant expressed at the surface of Streptococcus pyogenes and has been shown to elicit protective immunity against GAS infection in a murine challenge model. SOF consists of two distinct domains with different binding capacities: an N-terminal domain that binds apolipoprotein AI and a C-terminal repeat domain that binds fibro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2006